ON DISCRETE HESSIAN MATRIX AND CONVEX EXTENSIBILITY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Discrete Hessian Matrix and Convex Extensibility

For functions defined on integer lattice points, discrete versions of the Hessian matrix have been considered in various contexts. In discrete convex analysis, for example, certain combinatorial properties of the discrete Hessian matrices are known to characterize M-convex and L-convex functions, which can be extended to convex functions in real variables. The relationship between convex extens...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Discrete Hessian Matrix for L-convex Functions

L-convex functions are nonlinear discrete functions on integer points that are computationally tractable in optimization. In this paper, a discrete Hessian matrix and a local quadratic expansion are defined for L-convex functions. We characterize L-convex functions in terms of the discrete Hessian matrix and the local quadratic expansion.

متن کامل

Einstein-Hessian barriers on convex cones

On the interior of a regular convex cone K ⊂ R there exist two canonical Hessian metrics, the one generated by the logarithm of the characteristic function, and the Cheng-Yau metric. The former is associated with a self-concordant logarithmically homogeneous barrier on K with parameter of order O(n), the universal barrier. This barrier is invariant with respect to the unimodular automorphism su...

متن کامل

Edge Detection with Hessian Matrix Property Based on Wavelet Transform

In this paper, we present an edge detection method based on wavelet transform and Hessian matrix of image at each pixel. Many methods which based on wavelet transform, use wavelet transform to approximate the gradient of image and detect edges by searching the modulus maximum of gradient vectors. In our scheme, we use wavelet transform to approximate Hessian matrix of image at each pixel, too. ...

متن کامل

Hessian Riemannian Gradient Flows in Convex Programming

In view of solving theoretically constrained minimization problems, we investigate the properties of the gradient flows with respect to Hessian Riemannian metrics induced by Legendre functions. The first result characterizes Hessian Riemannian structures on convex sets as metrics that have a specific integration property with respect to variational inequalities, giving a new motivation for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Operations Research Society of Japan

سال: 2012

ISSN: 0453-4514,2188-8299

DOI: 10.15807/jorsj.55.48